B.Sc. Part-II PHYSICS # thy ### THERMODYNAMICS, KINETIC THEORY AND STATISTICAL PHYSICS UNIT-1 The laws of thermodynamics: The Zeroth law, first law of thermodynamics, internal energy as a state function, reversible and irreversible change, Carnot's cycle, carnot theorem, second law of thermodynamics. Claussius theorem inequality. Entropy, Change of entropy in simple cases (i) Isothermal expansion of an ideal gas (ii) Reversible isochoric process (iii) Free adiabatic expansion of an ideal gas. Concept of entropy, Entropy of the universe. Entropy change in reversible and irreversible processes, Entropy of Ideal gas, Entropy as a thermodynamic variable, S-T diagram, Principle of increase of entropy. The thermodynamic scale of temperature, Third law of thermodynamics, Concept of negative temperature. UNIT-2 Thermodynamic functions, Internal energy, Enthalpy, Helmholtz function and Gibb's free energy, Maxwell's thermo dynamical equations and their applications, TdS equations, Energy and heat capacity equations Application of Maxwell's equation in Joule-Thomson cooling, adiabatic cooling of a system, Van der Waals gas, Clausius-Clapeyron heat equation. Blackbody spectrum, Stefan-Boltzmann law, Wien's displacement law, Rayleigh-Jean's law, Planck's quantum theory of radiation. UNIT-3 Maxwellian distribution of speeds in an ideal gas: Distribution of speeds and velocities, experimental verification, distinction between mean, rms and most probable speed values. Doppler broadening of spectral lines. Transport phenomena in gases: Molecular collisions mean free path and collision cross sections. Estimates of molecular diameter and mean free path. Transport of mass, momentum and energy and interrelationship, dependence on temperature and pressure. Behaviour of Real Gases: Deviations from the Ideal Gas Equation. The Viral Equation. Andrew's Experiments on CO2 Gas. Critical Constants. UNIT-4 The statistical basis of thermodynamics: Probability and thermodynamic probability, principle of equal a priori probabilities, statistical postulates. Concept of Gibb's ensemble, accessible and inaccessible states. Concept of phase space, γ phase space and μ phase space. Equilibrium before two systems in thermal contact, probability and entropy, Boltzmann entropy relation. Boltzmann canonical distribution law and its applications, law of equipartition of energy. Transition to quantum statistics: 'h' as a natural constant and its implications, cases of particle in a one-dimensional box and one-dimensional harmonic oscillator. UNIT-5 Indistinguishability of particles and its consequences, Bose-Einstein & Fermi-Dirac conditions, Concept of partition function, Derivation of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics, Limits of B-E and F-D statistics to M-B statistics. Application of B-E statistics to black body radiation, Application of F-D statistics to free electrons in a metal. # B.Sc. Part-II PHYSICS PAPER-II WAVES, ACOUSTICS AND OPTICS ### UNIT-1 Waves in media: Speed of transverse waves on uniform string, speed of longitudinal waves in a fluid, energy density and energy transmission in waves. Waves over liquid surface: gravity waves and ripples. Group velocity and phase velocity and relationship between them. Production and detection of ultrasonic and infrasonic waves and applications. 1 Reflection, refraction and diffraction of sound: Acoustic impedance of a medium, percentage reflection & refraction at a boundary, impedance matching for transducers, diffraction of sound, principle of a sonar system, sound ranging. ### UNIT-2 Fermat's Principle of Extremum path, the aplanatic points of a sphere and other applications. Cardinal points of an optical system, thick lens and lens combinations. Lagrange equation of magnification, telescopic combinations, telephoto lenses. Monochromatic aberrations and their reductions; aspherical mirrors and Schmidt corrector plates, aplanatic points, oil immersion objectives, meniscus lens. Optical instruments: Entrance and exit pupils, need for a multiple lens eyepiece, common types of eyepieces. (Ramsdon and Hygen's eyepieces). ### UNIT-3 Interference of light: The principle of superposition's, two slit interference, coherence requirement for the sources, optical path retardations, Conditions for sustained interference, Theory of interference, Thin films. Newton's rings and Michelson interferometer and their applications its application for precision determinations of wavelength, wavelength difference and the width of spectral lines. Multiple beam interference in parallel film and Fabry-Perot interferometer. Rayleigh refract meter, Twyaman-Green interferometer and its uses. ### UNIT-4 Diffraction, Types of Diffraction, Fresnel's diffraction, half-period zones, phasor diagram and integral calculus methods, the intensity distribution, Zone plates, diffraction due to straight edge, Fraunhofer diffraction due to a single slit and double slit, Diffraction at N-Parallel slit, Plane Diffraction grating, Rayleigh criterion, resolving power of grating, Prism, telescope. Polarized light and its mathematical representation, Production of polarized light by reflection, refraction and scattering. Polarization by double refraction and Huygens's theory, Nicoll prism, Retardation plates, Production and analysis of circularly and elliptically polarized light. Optical activity and Fresnel's theory, Biquartz polarimeter. ### UNIT-5 Laser system: Basic properties of Lasers, coherence length and coherence time, spatial coherence of a source, Einstein's A and B coefficients, Spontaneous and induced emissions, conditions for laser action, population inversion, Types of Laser: Ruby and, He-Ne laser and. Applications of laser: Application in communication, Holography and Basics of non linear optics and Generation of Harmonic.